(k/(4k^2-1))+(2/(4k^2+8k+3))

Simple and best practice solution for (k/(4k^2-1))+(2/(4k^2+8k+3)) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for (k/(4k^2-1))+(2/(4k^2+8k+3)) equation:


D( k )

4*k^2+8*k+3 = 0

4*k^2-1 = 0

4*k^2+8*k+3 = 0

4*k^2+8*k+3 = 0

4*k^2+8*k+3 = 0

DELTA = 8^2-(3*4*4)

DELTA = 16

DELTA > 0

k = (16^(1/2)-8)/(2*4) or k = (-16^(1/2)-8)/(2*4)

k = -1/2 or k = -3/2

4*k^2-1 = 0

4*k^2-1 = 0

4*k^2 = 1 // : 4

k^2 = 1/4

k^2 = 1/4 // ^ 1/2

abs(k) = 1/2

k = 1/2 or k = -1/2

k in (-oo:-3/2) U (-3/2:-1/2) U (-1/2:1/2) U (1/2:+oo)

k/(4*k^2-1)+2/(4*k^2+8*k+3) = 0

4*k^2+8*k+3 = 0

4*k^2+8*k+3 = 0

4*k^2+8*k+3 = 0

DELTA = 8^2-(3*4*4)

DELTA = 16

DELTA > 0

k = (16^(1/2)-8)/(2*4) or k = (-16^(1/2)-8)/(2*4)

k = -1/2 or k = -3/2

(k+3/2)*(k+1/2) = 0

k/(4*k^2-1)+2/((k+3/2)*(k+1/2)) = 0

(k*(k+3/2)*(k+1/2))/((4*k^2-1)*(k+3/2)*(k+1/2))+(2*(4*k^2-1))/((4*k^2-1)*(k+3/2)*(k+1/2)) = 0

k*(k+3/2)*(k+1/2)+2*(4*k^2-1) = 0

k^3+10*k^2+3/4*k-2 = 0

k^3+10*k^2+3/4*k-2 = 0

k^3+10*k^2+(3/4)*k-2 = 0

k^3+10*k^2+(3/4)*k-2 = 0 // * 0

{ 1, -1, 2, -2, 4, -4, 8, -8 }

1

k = 1

4*k^3+40*k^2+3*k-8 = 39

1

-1

k = -1

4*k^3+40*k^2+3*k-8 = 25

-1

2

k = 2

4*k^3+40*k^2+3*k-8 = 190

2

-2

k = -2

4*k^3+40*k^2+3*k-8 = 114

-2

4

k = 4

4*k^3+40*k^2+3*k-8 = 900

4

-4

k = -4

4*k^3+40*k^2+3*k-8 = 364

-4

8

k = 8

4*k^3+40*k^2+3*k-8 = 4624

8

-8

k = -8

4*k^3+40*k^2+3*k-8 = 480

-8

{ 1/2, -1/2, 1/4, -1/4, -1/2, 1/2, -1/4, 1/4, 2/2, -2/2, 2/4, -2/4, -2/2, 2/2, -2/4, 2/4, 4/2, -4/2, 4/4, -4/4, -4/2, 4/2, -4/4, 4/4, 8/2, -8/2, 8/4, -8/4, -8/2, 8/2, -8/4, 8/4 }

1/2

k

1/2

4*k^3+40*k^2+3*k-8 = 4

1/2

-1/2

k

-1/2

4*k^3+40*k^2+3*k-8 = 0

-1/2

k+1/2

4*k^2+38*k-16

4*k^3+40*k^2+3*k-8

k+1/2

-4*k^3-2*k^2

38*k^2+3*k-8

-38*k^2-19*k

-16*k-8

16*k+8

0

4*k^2+38*k-16 = 0

DELTA = 38^2-(-16*4*4)

DELTA = 1700

DELTA > 0

k = (1700^(1/2)-38)/(2*4) or k = (-1700^(1/2)-38)/(2*4)

k = (10*17^(1/2)-38)/8 or k = (-10*17^(1/2)-38)/8

k in { (-10*17^(1/2)-38)/8, (10*17^(1/2)-38)/8, -1/2}

(k-((-10*17^(1/2)-38)/8))*(k-((10*17^(1/2)-38)/8))*(k+1/2) = 0

((k-((-10*17^(1/2)-38)/8))*(k-((10*17^(1/2)-38)/8))*(k+1/2))/((4*k^2-1)*(k+3/2)*(k+1/2)) = 0

((k-((-10*17^(1/2)-38)/8))*(k-((10*17^(1/2)-38)/8))*(k+1/2))/((4*k^2-1)*(k+3/2)*(k+1/2)) = 0 // * (4*k^2-1)*(k+3/2)*(k+1/2)

(k-((-10*17^(1/2)-38)/8))*(k-((10*17^(1/2)-38)/8))*(k+1/2) = 0

( k+1/2 )

k+1/2 = 0 // - 1/2

k = -1/2

( k-((-10*17^(1/2)-38)/8) )

k-((-10*17^(1/2)-38)/8) = 0 // + (-10*17^(1/2)-38)/8

k = (-10*17^(1/2)-38)/8

( k-((10*17^(1/2)-38)/8) )

k-((10*17^(1/2)-38)/8) = 0 // + (10*17^(1/2)-38)/8

k = (10*17^(1/2)-38)/8

k in { -1/2}

k in { (-10*17^(1/2)-38)/8, (10*17^(1/2)-38)/8 }

See similar equations:

| 2/3m=6 | | 7-7x=167-442x | | 13x^2+26x=39 | | 6y-4=44 | | 425+150=(503)+425 | | 6/x+3=5/x-2 | | 425+150=(505)+425 | | 6/x+3 | | 3x+51=-8 | | 3z-17+2x=13 | | 10-7y=6.5 | | 425+150=(5010)+425 | | 7x=3x+18 | | 425+150=(50100)+425 | | 425+150=(50(100))+425 | | 32b^2/16b^4 | | 4x+3(6)=18 | | 425+150=(5025)+425 | | 7+12=95+x | | 3n+5/8=4 | | t/8=12.6 | | n+5/2=4 | | 2x-2=52 | | C+7=49 | | n/3=9 | | x/4-1=-2 | | 7-x/3=12 | | 13/8=y | | 6p+3=8p-21 | | -4x-12-3x=-26 | | x+1/5=-3/5 | | 55+100=(200-100)+55 |

Equations solver categories